
BotMeter: Charting DGA-Botnet Landscapes in Large Networks

Ting Wang� Xin Hu∗ Jiyong Jang† Shouling Ji♦ Marc Stoecklin† Teryl Taylor‡
�Lehigh University ∗Pinterest †IBM Research

♦1Zhejiang University ♦2Georgia Tech ‡UNC Chapel Hill
�ting@cse.lehigh.edu ∗huxinsmail@gmail.com †{jjang, mpstoeck}@us.ibm.com ♦sji@gatech.edu ‡tptaylor@cs.unc.edu

Abstract—Recent years have witnessed a rampant use of
domain generation algorithms (DGAs) in major botnet crime-
wares, which tremendously strengthens a botnet’s capability
to evade detection or takedown. Despite a plethora of existing
studies on detecting DGA-generated domains in DNS traffic,
remediating such threats still relies on vetting the DNS behavior
of each individual device. Yet, in large networks featuring
complicated DNS infrastructures, we often lack the capability
or the resource to exhaustively investigate every part of the
networks to identify infected devices in a timely manner. It
is therefore of great interest to first assess the population
distribution of DGA-bots inside the networks and to prioritize
the remediation efforts. In this paper, we present BotMeter,
a novel tool that accurately charts the DGA-bot population
landscapes in large networks. Specifically, we embrace the
prevalent yet challenging setting of hierarchical DNS infras-
tructures with caching and forwarding mechanisms enabled,
whereas DNS traffic is observable only at certain upper-level
vantage points. We establish a new taxonomy of DGAs that
captures their characteristic DNS dynamics. This allows us to
develop a rich library of rigorous analytical models to describe
the complex relationships between bot populations and DNS
lookups observed at vantage points. We provide results from
extensive empirical studies using both synthetic data and real
DNS traces to validate the efficacy of BotMeter.

I. INTRODUCTION

A botnet is a large number of malware-infected devices
(bots) that may be remotely controlled by their opera-
tors through command-and-control (C2) channels. As the
workhorse of varied large-scale attacks (e.g., DDoS, email
spamming, key logging, click fraud), botnets represent a
major threat to Internet security. A fundamental aspect of
any botnet is that of coordination, i.e., how the bots identify
and communicate with their botmasters (C2 servers). Con-
ventionally, bots locate C2 servers using their IP addresses,
DNS names, or node IDs in peer-to-peer overlays [18].

Over recent years, a rampant use of domain generation
algorithms (DGAs) has been witnessed in major botnet
crimewares (e.g., Torpig, Conficker, NewGoZ) [1]. By using
DGA, each bot dynamically and independently generates a
list of pseudo-random domains. It then attempts to contact
domains on the list sequentially until one succeeds (i.e.,
the domain resolves to an IP address and the corresponding
server provides a valid response) or aborts after a certain
number of trials. The botmaster needs to register only a few
domains on the list to serve as C2 servers. For example,

each Conficker.C worm [12] generates 50K random domains
everyday, among which it attempts to contact up to 500
domains, giving itself 1% of chance of being updated if
the botmaster registers only one domain per day.

The use of DGA significantly strengthens a botnet’s capa-
bility to evade detection or takedown. Foremost, the sheer
number of potential rendezvous points makes it extremely
difficult to preemptively eliminate C2 channels (e.g., black-
listing or pre-registration). Moreover, even if the current C2
domains or IPs are captured and taken down, the bots will
eventually identify the relocated C2 servers via looking up
the next set of automatically generated domains. Further, due
to the use of public-key encryption, it is infeasible to mimic
communication from the botmasters for the bots will reject
any commands not signed by their botmasters.

Varied techniques have since been proposed to detect
DGA-domains in DNS traffic, including analyzing algorith-
mic patterns of domains [25], reverse-engineering malware
instances [16, 8, 20, 12], clustering non-existent domains in
DNS lookups [7, 23], and directly capturing C2 traffic [10,
13, 15]. However, our understanding of how to leverage
detected DGA-domains to remediate practical botnet threats
in large-scale networks is still fairly limited.

At a first glance, this may seem a simple problem with
trivial solutions, e.g., capturing C2 channels and tracing
back to infected machines [22], or detecting DGA-domains
and vetting the DNS behavior of each individual device
to identify positive matches. Unfortunately, these naı̈ve
solutions face major challenges in practice. First, due to
the randomness nature of DGA, only a small portion of
bots may successfully establish connections with C2 servers
everyday; further, the captured C2 may be valid only for a
short timespan, as the bots quickly roll over to relocated C2
domains. Second, in large networks, hundreds of thousands
of machines are often geographically distributed and proba-
bly managed by different entities. Exhaustively investigating
every part of the networks can be prohibitively expensive
in terms of operational costs. In face of rapidly emerging
botnet threats, yet with limited resources or accesses, this
may considerably delay addressing the threats in a timely
manner. It is thus of great interest to first quickly assess
the populations of DGA distributed over the networks and to
prioritize the remediation efforts.

Concretely, we assume confirmed domains generated by
target DGAs and aggregated DNS lookups observed at certain
vantage points. We remark that this assumption is realistic.
First, varied off-the-shelf techniques (e.g., [25, 16, 8, 20,
12, 7]) are available to effectively identify DGA-domains.
Second, the DNS infrastructures of large networks are often
hierarchical with caching-and-forwarding mechanisms en-
abled [6]. Upper-level DNS servers only observe aggregated
DNS traffic forwarded by lower-level servers; meanwhile,
local servers only forward lookups missed in their caches.
Due to operational costs, DNS traffic is often visible and
collectable only at certain upper-level DNS servers.

Embracing the challenging setting, we present BOTMETER,
a novel tool that accurately assesses DGA-bot populations
by exploiting the temporal and semantic patterns inherent
in DNS dynamics of DGAs. To build BOTMETER, we first
establish a new taxonomy of DGAs based on their charac-
teristic domain fluxing behaviors. This allows us to develop
a rich library of rigorous analytical models to capture the
DNS dynamics of a broad range of DGAs. Compared with
alternative solutions, BOTMETER departs in significant ways:
(i) it works on highly aggregated DNS traffic; (ii) it takes ac-
count of the impact of caching-and-forwarding mechanisms
in DNS infrastructures; (iii) it is backed by a rich library
of estimation models designed for a range of DGA families;
and (iv) it is resilient against noisy and missing observations.
To the best of our knowledge, BOTMETER is the first non-
intrusive solution capable of accurately assessing DGA-bot
populations while incurring minimal operational costs. Our
contributions can be summarized as follows.
• We articulate the problem of charting DGA-botnet land-

scapes in large networks using aggregated DNS lookups
observed at a few upper-level vantage points.

• We establish a new DGA taxonomy based on their char-
acteristic domain-fluxing behaviors. For a wide range of
DGA families, we develop rigorous analytical models to
capture the complex relationships between bot populations
and DNS lookups observed at vantage points.

• We implement BOTMETER, a novel tool that realizes
all these ideas. We extensively evaluate its empirical
performance using both synthetic and real DNS traces.
The promising results indicate that BOTMETER is able to
accurately assess the severity of botnet infection, thereby
helping analysts quickly navigate the threat landscapes of
their networks and prioritize the remediation efforts.

II. PRELIMINARIES

A. Life Cycle of DNS Lookup Queries

As one of the backbone components of Internet, the
Domain Name System (DNS) resolves domain names to
corresponding IP addresses. For an invalid domain name,
“NXDomain” (NXD) is returned. The DNS infrastructure of

Local DNS Server

(Local Cache)

Clients

DNS Lookup

IP Address
or NXD

Border DNS Server

(Forwarded) DNS Query
IP Addressor NXD

Boundary of Enterprise Network

Figure 1: A hierarchical DNS architecture in a large network.

a large network is typically hierarchical. A DNS lookup
query is first processed by the client’s local DNS server. For
efficiency purpose, a caching-and-forwarding mechanism is
often enabled. Concretely, the local server stores previously
queried domains and responses, each record valid for a
certain period (TTL). Given a DNS lookup query, the server
first attempts to answer it using its cached results. Only when
a miss occurs, the query is forwarded to an upper-level DNS
server; once the response is returned, the cache at the local
server is updated accordingly.

B. Visibility of DNS Traffic

Vantage Point - Because of operational costs, of-
tentimes, DNS traffic is visible and collectable only
at certain vantage points. We assume that the vantage
points are set at the border DNS servers, as shown
in Figure 1, which collect DNS lookups forwarded by
lower-level DNS servers. Also we assume that the for-
warded lookups come in as a stream of tuples of the
form: 〈timestamp t, forwarding server s, domain d〉, with
each tuple representing a lookup for domain name d issued
at time t and forwarded by server s.

Positive and Negative Caching - A DNS lookup will not
be forwarded to the border DNS server (i.e., invisible) if it is
found in the cached results, being it a valid domain (positive)
or a NXD (negative). Thus, at border DNS servers we only
observe cache-filtered DNS lookups. It is noted that the TTLs
of valid domains and that of NXDs are often different. As
IETF suggests, positive TTLs are typically one to several days
while negative TTLs varies from minutes to hours [11].

Detection Window - A number of DGAs use current dates
as their seeds of randomness and are executed on a daily
basis. We therefore use a uniform model to describe their
DNS behaviors. Everyday from a pool of pseudo-random
domains, each bot selects a subset of them to query the
DNS server. Ideally a perfect DGA-domain detection (D3)
algorithm is able to detect all the domains in the pool.
However, in reality, due to all sorts of constraints (e.g.,
the botnet malware may be updated frequently or it may

DNS Traffic

Configuration

DGA Domain
Matcher

Population
Estimation

Analytic Model
Library

Matching
Results

BotMeter

Algorithmic Pattern of
DGA Domains

Parameter
Specification

1

2

3

4

5

6

7

Figure 2: Architecture of BOTMETER

be obfuscated and only decrypted and executed by external
triggers such as time), the D3 algorithm is usually often
able to detect a part of the pool, which we refer to as its
detection window. Furthermore, a small number of domains
in the pool may coincide with valid domains, which we refer
to as collision cases.

C. BotMeter in A Nutshell

We now formulate the problem of DGA-bot population as-
sessment: given the detection window for domains generated
by a target DGA, via analyzing DNS lookups observed at a
border DNS server as forwarded by lower-level DNS servers,
we intend to accurately estimate the population of bots that
employ this particular DGA within the network behind each
local DNS server.

We present BOTMETER, a novel tool built for this task.
Figure 2 illustrates its high-level architecture. Tapped at a
border DNS server (�), BOTMETER analyzes DNS lookups
forwarded by lower-level DNS servers. BOTMETER allows
analysts to specify algorithmic patterns (or plain lists) of
domains generated by targeted DGAs (�) and matches in-
coming DNS traffic against such patterns (�). The matching
results (including timestamps, domains of matched DNS
lookups, and corresponding local DNS servers) are fed as
input to the next phase (�). The workhorse of BOTMETER is
a library of analytical models designed for a range of DGA
families (�). Through the configuration interface (�), the
analysts select the most appropriate analytical model, specify
key parameters (e.g., detection window size), and perform
bot population estimation using the matching results.

To build BOTMETER, we need a new taxonomy to capture
DGA-specific DNS dynamics. In § III, we establish such a
taxonomy, allowing us to develop the library of analytical
models for BOTMETER in § IV.

III. A NEW DGA TAXONOMY

We start with a simple model of DGA, branch from it, and
instantiate a broad range of DGA families.

Everyday from a query pool of (θ∅ + θ∃) pseudo-random
domains1, the botmaster selects a subset of θ∃ domains

1Note that because the botmaster and bots share the same DGA, this
query pool is known to both of them.

(typically a few, i.e., θ∃ � θ∅) and registers them as
C2 servers, with the remaining θ∅ being invalid NXDs;
meanwhile, each active bot attempts to query its local DNS
server with up to θq domains (which we refer to as the query
barrel) chosen from this pool until hitting one valid domain
or aborts otherwise.

We now differentiate DGA families based on (i) how the
query pool is generated, (ii) how the query barrel is selected,
and (iii) the concrete setting of θ∃, θ∅, and θq.

A. Query Pool Model

Drain-and-Replenish Pool - This is perhaps the simplest
query pool model, wherein the entire query pool is replaced
on a regular basis (e.g., daily). A majority of DGAs follow
this model (e.g., Murofet, Srizbi, Conficker, GameoverZeus).

Sliding-Window Pool - Some recent DGAs (e.g., Ran-
byus [5] and PushDo [2]) adopt a sliding-window pool model.
On a regular basis, a set of new pseudo-random domains are
generated to replace a set of “expired” domains in the query
pool. This gives DGAs the benefit of fast changing domains
in case that old domains are blocked or sinkholed, while
at the same time enabling older domains to be re-used as
long as they still work. For example, Ranbyus generates a
fresh set of 40 domains everyday and also maintains the
domains generated in the past 30 days, i.e., a pool of 1,240
domains; PushDo maintains a window of -30 to +15 days of
30 domains per day, giving it a query pool of 1,380 domains.

Multiple Mixture Pool - To further increase the resilience
against takedown, a few recent DGAs introduce the multiple
mixture pool model. Each bot employs mutliple identical
DGA instances, but with different seeds and parameter
settings, to generate multiple sets of interleaved domains.
One DGA generates useful domains while the others generate
noisy ones. For example, Pykspa [14], employs two identical
DGA instances, one generating a pool of 200 useful domains
and the other generating a pool of 16K noisy domains.

B. Query Barrel Models

Uniform Barrel - This is the simplest as well as the
most popular query barrel model, adopted by a majority
of DGA families (e.g., Murofet, Srizbi, Torpig). Under this
model, a bot simply queries all the domains in the query
pool following the order they have been generated.

Sampling Barrel - Represented by Conficker.C [12], this
class features a query barrel as a randomly sampled subset
from the query pool. For example, everyday a Conficker.C bot
generates a pool of 50K domains, among which it randomly
selects up to 500 of them to form its query barrel. In contrast
of the uniform barrel model, this model provides bots with
stronger resilience against detection (i.e., bots tend to query
different subsets of domains), but at the cost of lower success
rate to establish bot-to-botmaster communications.

Query Pool Model

Q
u

er
y

B
ar

re
l M

o
d

el

Multiple-MixtureDrain-Replenish Sliding-Window

Sampling

Permutation

Uniform

Conficker.C

newGoZ

Necurs

Pykspa

Ranbyus

?

?

?

RandomCut

PushDo
Murofet
Srizbi

?

?

?AU

AP

AS

AR

R
an

d
o

m
n

es
s

D
et

er
m

in
is

m

Figure 3: A taxonomy of DGAs and representative DGA
families (“?” indicates that DGAs following the particular
model have not been spotted in the wild).

RandomCut Barrel - This class defines a global sequen-
tial order over domains in the query pool. Each active bot
randomly picks a sequence number as the starting point and
considers the next θq domains (modular arithmetically) as its
query barrel. For example, each newGoZ bot constructs its
query barrel by randomly selecting 500 consecutive domains
from a sequence of 10K domains [3]. Interestingly, the
model strikes a balance between the uniform and sampling
models in that it features more randomness than the former
due to using random starting points but more determinism
than the latter due to enforcing a global sequential order.

Permutation Barrel - For DGAs belonging to this class,
the query pool is re-generated regularly, meanwhile each bot
attempts to look up all the domains in the pool in a randomly
shuffled order. In other words, the query barrel is a random
permutation of the query pool. For example, Necurs [4],
adopts this barrel model. A Necurs bot changes its query pool
every four days, which contains 2,048 domains; everyday the
bot queries these domains in a random permutation order.
Similar to the randomcut model, this one achieves a balance
between detection-resilience and coordination-simplicity.

C. Summaries

With the query pool and barrel models as reference, we
establish a new taxonomy of DGAs, as illustrated in Figure 3.
Letting the horizontal and vertical axes represent query pool
and barrel models respectively, we partition the “universe”
of DGAs into twelve categories, each corresponding to one
particular barrel-model combination. It is clear that com-
pared with existing DGA taxonomies, this new taxonomy
well captures the characteristic DNS dynamics of DGAs. As
we will show shortly, this taxonomy facilitates to develop
DGA-bot population estimation models applicable for a wide
range of DGA families, for we only need to design one
analytical model for all DGA families following the same
pool-barrel-model combination.

The space limitations preclude the possibility of exploring
all the combinations of query pool and barrel models. In

the following, we focus on the most popular pool model
(i.e., the drain-and-replenish pool) and consider all the barrel
models. We use AU , AS , AR, and AP to denote uniform-,
sampled-, randomcut-, and permutation-barrel DGAs, respec-
tively. Next we elaborate bot population estimation models
designed for DGAs in these categories.

IV. ANALYTICAL MODELS
A. Preliminaries

We first introduce a set of fundamental concepts. Given
a DGA-bot, each round execution of its DGA is called
an activation; the timespan of an activation is called its
duration; the temporal gap between two consecutive DGA-
triggered DNS lookups is referred to as a query interval;
the waiting time between two consecutive activations is an
epoch; finally, the timespan for which a DNS server caches
a DNS response is determined by the setting of time to live
(TTL). We use δi, δe, δd, and δl to denote query interval,
epoch, duration, and TTL, respectively.

Typically, δe is of the granularity of a day, while δl varies
from minutes to hours for NXD [11]. For most DGAs, there
are minimal intervals (e.g., δi = 500ms) between consecutive
DGA-triggered DNS lookups. Thus δd is negligible compared
with δe or δl. For simplicity, we assume δe = one day and
δe is a multiple of δl. Following the DGA model in § III,
the query pool comprises (θ∃ +θ∅) domains, among which
θ∃ are registered as C2 servers with θ∅ being NXDs; a bot
attempts to resolve up to θq domains until it either hits a
valid domain or aborts otherwise.

The current implementation of BOTMETER includes three
analytical models: Timing estimator (MT), Poisson estima-
tor (MP), and Bernoulli estimator (MB).
B. Timing Estimator (MT)

We start with the Timing estimator (denoted by MT),
which intuitively differentiates DNS lookups belonging to
different bots based on their temporal traits.

Specifically, MT leverages three kinds of traits. First, dur-
ing a one-epoch-long time window, two lookups regarding
a same NXD are likely to be generated by different bots.
Second, two lookups with a gap longer than the maximum
possible duration (i.e., θq ·δi) are attributed to different bots.
Finally, the query interval of a given DGA is typically fixed
(e.g., 1sec for newGoZ); that is, each activation produces a
train of lookups with regular temporal intervals [9]. Thus, if
the timestamp granularity is fine enough and the timestamps
faithfully reflect the actual issuing time of DNS lookups,
MT is able to discern lookups of different bots if they are
not separated by a multiple of query intervals. For example,
given δi = 500ms, two lookups with a temporal gap of 750ms
are likely to belong to different bots.

The workflow of MT is sketched in Algorithm 1. It
maintains a list L, each entry corresponding to one distinct

TTLi−1 TTLi TTLi+1 TTLi+2

λ

∆i ∆i+1 ∆i+2

visible activation invisible activation

Figure 4: (In)-visible activations of AU , TTL of negative
caching, and Poisson estimator MP .
bot. It applies the aforementioned three heuristic rules to
each tuple in the sequence of DNS lookups. If the lookup
is considered to belong to a bot existing in the list, it is
“absorbed” and the domain list of the corresponding entry is
updated. Otherwise, a new entry representing an unseen bot
is created. Eventually the number of entries in L indicates
the number of bots MT has discovered.

Algorithm 1: Timing Estimator MT
Input: S - sequence of tuples {〈t, d〉}; θq- maximum barrel

size; δi- query interval
Output: estimation of bot population N
// classification of lookups to distinct bots

1 L ← ∅;
2 for each tuple 〈timestamp t, domain d〉 ∈ S do
3 if L is empty then add (t, {d}) to L and continue;
4 for each entry (timestamp t∗, domains D) ∈ L do

// heuristic #1
5 if d appears in D then continue;

// heuristic #2
6 if t∗ + δi · θq ≤ t then continue;

// heuristic #3
7 if (t− t∗) mod δi �= 0 then continue;
8 add d to D and break;

9 if 〈t, d〉 is not “absorbed” then add entry (t, {d}) to L;

10 return number of entries in L as N;

C. Poisson Estimator (MP)

Solely relying on the temporal traits of DNS lookups, MT
is applicable to all the DGA models in Figure 3. However, it
faces a major challenge in estimating AU bot populations:
according to its definition (cf. § III-B), DGA-bots employing
AU generate identical query barrels during each epoch; due
to the caching effect at local DNS servers, if multiple bots
are activated within a same time window of length TTL,
only the first one is visible, as illustrated in Figure 4. It
is thus infeasible to estimate bot population directly from
observable DNS lookups. The key challenge here is to infer
the number of bots whose activations have been “masked”
by the caching mechanism.

To address this challenge, we model the activations of
DGA-bots as a Poisson process, a stochastic process widely
applied to model punctual phenomena wherein events occur
independently of each other [17]. We introduce the Poisson

estimator (denoted by MP) with the intuitive idea of (i) first
estimating the average activation rate λ of this Poisson pro-
cess and (ii) then determining the total number of activations
that occur during the given observation window.

Let ∆i denote the gap between the end of (i− 1)-th TTL
and the start of i-th TTL, as shown in Figure 4. We consider
{∆i} as an indication of the activation rate λ. Intuitively,
a larger bot population leads to a shorter “waiting time”
before the next bot to be activated. Considering n TTLs
with temporal gaps {∆i}ni=1

2, the expectation of average
activation rate λ is derived as: E(λ) = n/

∑n
i=1 ∆i.

The expectation of total number of active bots appearing
in the given observation window is thus given by:

E(N) = E(λ)

n∑
i=1

(∆i + δl) = n+
n2δl∑n
i=1 ∆i

(1)

D. Bernoulli Estimator (MB)

AR differs from the rest DGA models in that it dictates
a global sequential order over domains in the query pool
and each bot randomly selects a sequence number as the
starting point to query (cf. § III-B). Such unique charac-
teristics demand a customized estimator. We introduce the
following model to describe AR (as shown in Figure 5):
the DGA-domains form a circle with the clockwise direction
indicating the order to be queried; the set of θ∃ valid domains
partition the circle into θ∃ arcs and serve as arc boundaries;
each bot randomly picks one domain on the circle and selects
(clockwise) the next θq domains to query or stops on hitting
an arc boundary.

All the distinct NXDs queried by bots during an epoch
form a set of segments, each comprising consecutive NXDs.
Given the set of arcs and their associated segments, we infer
the number N of bots responsible for generating NXDs to
“cover” all such segments. We differentiate two types of
segments, those ended in the middle of an arc (m-segment)
and those ended at an arc boundary (b-segment). Consider
a random variable q obeying the following distribution:

Pr(q = i) =

θ∃
i+1

(
θ∅
i

)
/
(
θ∃+θ∅
i+1

)
0 ≤ i < θq (a)(

θ∅
θq

)
/
(
θ∃+θ∅

θq

)
i = θq (b)

0 otherwise (c)
(2)

where
()

is the binomial coefficient. (a) and (b) correspond
to that the bot hits a valid domain and that it aborts after
trying θq lookups respectively. It is noticed that 1) an m-
segment must be covered by bots in (b), 2) a b-segment of
length less than θq must be covered by bots in (a), and 3) a
b-segment of length no less than θq is covered by a mixture
of bots in (a) and (b).

2∆1 corresponds to the elapse time between the start of observation
window and the activation of the first bot.

valid domain

valid domain

valid domain

m-segment

m-segment

b-segment

b-segment

querying direction

Figure 5: Illustration of DNS dynamics of AR

Based on these observations, we derive the expectation of
bot population required to cover a given m- or b-segment.
Let f(l̃, n,m) = m!

l̃n

(
l̃
m

) ({
n
m

}− l̃
{
n−1
m

})
and g(l̃, m) =

∑⌊
l̃−2
θq

⌋

k=0 (−1)k
(
m−1
k

)(
l̃−kθq−2
m−2

)
/
(
l̃−2
m−2

)
, where

{}
represents

Stirling numbers of the second kind. We define:

h(l̃, n) =
l̃∑

m=1

f(l̃, n,m)g(l̃, m) (3)

Theorem 1. Given a segment L of length l, let ll = l−θq+1
and lu = ll if L is an m-segment and lu = l otherwise. The
expectation of bot population NL required to cover L is given
by: E(NL) =

∑+∞
n=1 n

∑lu
l̃=ll

h(l̃, n).

Proof: Referred to our technical report [24].
Theorem 1 naturally leads to an estimation model, the

Bernoulli estimator (MB), with details referred [24].

V. EMPIRICAL EVALUATION

In this section, we empirically evaluate the performance
of BOTMETER using both synthetic data and real DNS traces
collected from a large enterprise network over a one-year
timespan. Specifically, with synthetic data, we intend to mea-
sure (i) the accuracy of estimation with respect to different
DGA models and parameter settings and (ii) the robustness
of estimation against noisy and missing observations as well
as network dynamics; with real DNS traces, we intend to
evaluate the efficacy of BOTMETER in actual deployment.

A. Evaluation over Synthetic Data

We first implement a set of simulators generating realistic
DNS traffic according to different DGA models. Specifically,
we fix the drain-and-replenish model (cf. § III-A) as the pool
model and consider varied barrel models AU , AS , AR,
and AP (cf. § III-B). The default parameter setting is as
follows: epoch = 1 day, length of observation window = 1
day, negative cache TTL = 2 hour, positive cache TTL =
1 day, and timestamp granularity = 100ms. The setting of
DGA-specific parameters is listed in Table I.

Given a population of N bots, we model their activations
as a Poisson process, a counting process widely applied to
model networking events [17]. To capture varying network
dynamics, we consider two variants of processes, one with
a constant activation rate λ0 = N/δe, and the other with
this rate changing dynamically for every bot. Specifically,
for the i-th bot to be activated, its activation rate (since

DGA Model Prototype θ∅ θ∃ θq δi

AU Murofet 798 2 798 500ms
AS Conficker.C 49995 5 500 1sec
AR newGoZ 9995 5 500 1sec
AP Necurs 2046 2 2046 500ms

Table I. DGA-specific parameter setting.
the activation of its predecessor) is given by λi = λ0e

κi ,
where κi is randomly sampled from the normal distribu-
tion N (0, σ2). We control the dynamics of bot activation
rate through the variance parameter σ; intuitively, larger σ
implies more dynamically varying activation rate.

For a given DGA A, the simulator outputs a sequence of
tuples 〈timestamp t, client c, domain d〉, each representing a
DNS lookup regarding domain d (generated by A) issued by
an infected client c at time t. We then apply the caching and
forwarding mechanism (i.e., acting as a local DNS server)
over this sequence and generate a sub-sequence of tuples of
the form 〈timestamp t, domain d〉, each representing a DNS
lookup forwarded by the local server to the boarder DNS
server (i.e., observable by BOTMETER). Note that the client
information is invisible in the forwarded DNS lookups.

Experiment Setup

We measure the accuracy of the estimators in BOTMETER

under varied parameter settings. We use the metric of ab-
solute relative error (ARE) to quantify estimation accuracy:

ARE =

∣∣∣∣
estimated population − actual population

actual population

∣∣∣∣ (4)

We consider five key parameters: (i) actual bot population,
(ii) size of observation window, (iii) negative cache TTL, (iv)
dynamics of bot activation rate, and (v) detection window of
D3 algorithm. In each set of experiments, with the remaining
parameters fixed, we vary one particular parameter and
observe its influence on different estimators. Specifically, we
apply the Timing estimator (MT) to all the DGA models, the
Poisson estimator (MP) to AU , and the Bernoulli estimator
(MB) to AR.

Experiment Results

Population of DGA-bots - We measure the accuracy of
different estimators as a function of bot population N in the
network. As shown in Figure 6 (a), when N varies from 16 to
256, we observe shrinking error bars (25th-75th percentile of
errors) across all the estimators in the cases of AU , AS , and
AR. This is because ARE is essentially a relative metric (cf.
Eqn (4)), amplifying the difference of absolute errors when
N is small. However, as N increases, MT suffers significant
accuracy loss in the case of AU . This is expected, because
more active bots result in higher possibility of “collision”
between their DNS behaviors (i.e., more lookups of distinct
bots overlap and become invisible due to DNS caching),
significantly impairing the temporal “discernibility” of bots
from the perspective of MT . In opposite, in the cases of

DGA−bot population (N)
16 32 64 128 256

0

.05

.1

.15

.2

.25

16 32 64 128 256
0

.05

.1

.15

.2

.25

16 32 64 128 256
0

.05

.1

.15

.2

.25

16 32 64 128 256
0

.1

.2

.3

.4

.5

Length of observation window (# epoch)
1 2 4 8 16

0

.05

.1

.15

.2

1 2 4 8 16
0

.05

.1

.15

1 2 4 8 16
0

.05

.1

.15

1 2 4 8 16
0

.05

.1

.15

Negative cache TTL (min)
20 40 80 160 320

0

.1

.2

.3

20 40 80 160 320
0

.05

.1

.15

20 40 80 160 320
0

.05

.1

.15

20 40 80 160 320
0

.1

.2

.3

Dynamics of bot activation rate ()
.5 1 1.5 2 2.50

.05

.1

.15

.2

.5 1 1.5 2 2.50

.05

.1

.15

.2

.5 1 1.5 2 2.50

.05

.1

.15

.2

.5 1 1.5 2 2.50

.05

.1

.15

.2

Missing rate of D3 algorithm (%)

Timing Poisson Bernoulli

A
bs

ol
ua

te
 r

el
at

iv
e

er
ro

r
A

bs
ol

ua
te

 r
el

at
iv

e
er

ro
r

A
bs

ol
ua

te
 r

el
at

iv
e

er
ro

r
A

bs
ol

ua
te

 r
el

at
iv

e
er

ro
r

A
bs

ol
ua

te
 r

el
at

iv
e

er
ro

r

(a)

(b)

(c)

(d)

(e)

10 20 30 40 50
0

.05

.1

.15

.2

.25

10 20 30 40 50
0

.05

.1

.15

.2

.25

10 20 30 40 50
0

.05

.1

.15

.2

.25

10 20 30 40 50
0

.1

.2

.3

.4

.5

Figure 6: Estimation accuracy of BOTMETER with respect to different DGA families and parameter settings.

AS and AR, we observe monotonic improvement in the
accuracy of MT . This may be explained by that MT
leverages more than temporal traits to distinguish lookups
of different bots (cf. § IV). Given the stronger randomness
of AS and AR (cf. Figure 3), it is more likely for MT
to differentiate bots based on domains they have queried.
It is also noticed that MB and MP both outperform MT ,
because of their lesser dependence on the temporal traits of
individual lookups.

Length of observation window - In Figure 6 (b), we
vary the length of observation window (1 ∼ 16 epochs)
and average the estimates over the number of epochs. As
the window size grows, all the estimators are observed to
enjoy improved accuracy. Intuitively, this may be explained
by that the estimate variances of different estimators within
individual epochs “cancel out” in an enlarged observation
window. The improvement is especially evident for AS and
AR (e.g., the maximum error of MT decreases from around
.12 to below .03 in the case of AR). One can attribute this to
the stronger randomness of AS and AR in comparison with
AU and AP (cf. Figure 3). The stronger randomness leads
to the higher estimate variance, but also more improvement
margin when the observation window is enlarged.

TTL of negative cache - Next we study the impact of
caching mechanism of local DNS servers over the perfor-
mance of BOTMETER. As shown in Figure 6 (c), MT suffers
evident accuracy loss (e.g., with medium error jumping from
about .05 to over .2 in the case of AU) as the negative cache
TTL is increased. Intuitively, longer cache TTLs imply more
DNS lookups that are “masked” out, thereby significantly
reducing the visibility of temporal dynamics of individ-
ual lookups, which MT and MP depend on. Moreover,
between these two estimators (in the case of AU), MP
appears less sensitive to the TTL setting. This is because MP
exploits temporal traits of observable lookups to assess the
average bot activation rate and then estimates the number
of activations hidden by the caching; in contrast, MT is
unable to identify any bots that are completely masked by the
caching. Meanwhile, because MB only relies on collective
statistics of the bot population (i.e., distinct NXDs that have
been queried by DGA-bots), its performance is not influenced
by the caching mechanism.

Dynamics of bot activation rate - Recall that in the
DGA simulator configured with varying activation rate, we
control the dynamics of bot activation rate via the parameter
σ. We let σ increase from 0.5 to 2.5 and observe its influence
over the performance of different estimators. The results are
shown in Figure 6 (d). Note that like the negative cache TTL,
the dynamics of bot activation rate only affects temporal
traits of DNS lookups, which MB is largely immune to.
The comparison between MT and MP in the case of
AU is rather interesting. While MP outperforms MT
over the entire range of σ, the accuracy of MP decreases

more significantly (e.g., with maximum error increased from
around .07 to about .12) as σ grows. This is because MP
is premised on the assumption of approximately stable bot
activation rate, while the extremely fluctuating rate can cause
over- or under-estimation, especially when the observation
window is limited (e.g., one day).

Coverage of D3 algorithm - In reality, the D3 algorithm
may detect only a subset of DGA-NXDs (cf. § II-B). It is thus
critical to understand the impact of the detection window
of D3 algorithm over the estimators. Here, we assume that
the D3 algorithm randomly misses x percent of DGA-NXDs,
where x increases from 10 to 50. As shown in Figure 6 (e),
MB observes considerable accuracy losses as the detection
window shrinks, given that it solely relies on the statistics
of NXDs queried by the bot population. Meanwhile, the
effectiveness of D3 algorithm has limited influence over MP
and MT , due to their dependency on temporal traits of
individual NXD lookups; that is, the timestamps of a subset
of DGA-domains may be sufficient for MP to estimate
the average bot activation rate and for MT to distinguish
lookups belonging to different DGA-bots.

B. Evaluation over Real Data
Experiment Setup

To generate real DNS traces for our studies, we collect
DNS queries and responses from a local DNS server in a
large enterprise network over a one-year timespan (from
05/01/2014 to 04/30/2015), which we refer to as the raw
dataset. This local DNS server is responsible for resolving
DNS queries for a sub-network comprising more than 22.5K
IP addresses. During this time period, on average, there are
15,027 active IP addresses that issued DNS lookup queries
to the server per day. We also collect the DNS lookups
forwarded by this local server to the border DNS server,
which we refer to as the observable dataset (i.e., in the sense
that it is visible to BOTMETER). We assume a simplified data
format similar to that of the synthetic data, wherein the raw
dataset consists of a sequence of tuples of 〈timestamp, client,
domain〉 while the observable dataset consists of a series
of tuples of 〈timestamp, domain〉. Note that the forwarding
server is omitted here given that there is only one local
server. The granularity of timestamp is one second.

Further, from DGArchive3, a lookup service for DGA mal-
ware, we extract a number of DGAs, which are believed to
be active during this time period. Using the APIs provided by
DGArchive, we query and collect all the domains generated
by these DGAs during the given time period, which we refer
to as the pool dataset. We match both the raw and observable
datasets against the pool dataset. From the correlation results
of the raw and pool datasets, via counting the number of
distinct client IP addresses, we identify the population of

3https://dgarchive.caad.fkie.fraunhofer.de

10
0

10
1

10
2

100

101

102

0

10
1

10
2

Date of observation

newGoZ Ramnit

Qakbot

09/12/14

09/15/14

09/17/14

09/18/14

09/19/14

07/13/14

07/14/14

07/15/14

07/18/14

07/22/14

07/17/14

07/21/14

06/24/14

06/26/14

07/07/14

07/08/14

07/09/14

07/11/14

07/13/14

07/14/14

07/15/14

07/21/14

07/22/14

07/24/14

07/30/14

07/31/14

08/01/14

08/03/14

08/04/14

09/03/14

09/16/14

09/18/14

09/25/14

10/08/14

10/09/14

10/10/14

10/12/14

10/13/14

10/17/14

10/20/14

10/24/14

10/26/14

10/28/14

10/29/14

10/31/14

11/07/14

11/11/14

11/13/14

11/15/14

11/18/14

10

A
ct

ua
l a

nd
 e

st
im

at
ed

 b
ot

 p
op

ul
at

io
n

Ground truth Poisson/Bernoulli estimator Timing estimator

Figure 7: Daily populations of active bots and estimates made by MP , MB, and MT over 05/01/2014 ∼ 04/30/2015.
DGA δi MB MP MT

newGoZ 1sec .116± .177 1.545± .393

Ramnit none .157± .276 .884±1.297

Qakbot none .127± .237 4.294±5.118

Table II. Average estimation errors of varied estimators in
assessing newGoZ, Ramnit, and Qakbot bot populations.
active bots corresponding to each DGA for each day, which
serves as the ground truth in our experiments4. Meanwhile,
we feed the correlation results of the observable and pool
datasets as input to the analytical models of BOTMETER to
evaluate its performance.

We fix the observation window length as one day and
apply BOTMETER to estimating the daily population of
active bots with respect to each of the three DGAs. Note
that newGoZ belongs to AR while Ramnit and Qakbot are
instances of AU . Therefore, besides MT , we apply MB to
newGoZ and MP to Ramnit and Qakbot.

Experiment Results

We contrast the estimates of MT , MB, and MP (when
applicable) against the actual daily populations of active bots
(i.e., the ground truth). Figure 7 illustrates in detail the DGA-
bot populations and the estimates for each day, with the
accuracy of different estimators summarized in Table II.

It is observed that MP and MB perform highly accurate
estimation across all three DGA families. For example, MP
achieves average error below .12 in estimating newGoZ
populations; in comparison, the accuracy of MT could
be arbitrarily bad, with average error exceeding 4.2 in
estimating Ramnit populations. This contrast is attributed to
the reasons as below. First, as listed in Table II, all three
DGA families have query intervals equal to or finer than the
timestamp granularity in the data (i.e., one second), which
substantially blurs MT ’s view to differentiate different bots

4Wireless devices are assigned IP addresses dynamically via DHCP, but
their IP-MAC bindings are valid during a one-day time window.

based on their temporal periodicity. Second, MP and MB
rely on the statistics of bots’ collective behaviors (e.g.,
waiting time between two TTLs for MP and segment lengths
for MB), which is less subject to the timestamp granularity
of individual lookups.

Also interestingly, MB performs slightly better than MP .
This may be explained by that MB does not depend on any
temporal traits and the high coverage of D3 algorithm (based
on reverse engineering of DGAs) leads to reliable statistics
of DGA-generating NXDs, which is crucial for MB to make
effective estimation. These observations are consistent with
our findings in §V-A.

VI. RELATED WORK

As DNS systems become one primary target for In-
ternet miscreants (e.g., fast-fluxing, domain-fluxing, DNS
tunneling), the security community has conducted intensive
research on the misuse and abuse of DNS systems.

Most existing research on DGAs has focused on detecting
DGA-domains and identifying compromised machines to
hinder C2 traffic. Yadav et al. [25] proposed to discover
DGA-domains by leveraging their characteristic distribu-
tions of alphanumeric characters and bigrams. Schiavoni et
al. [19] leveraged linguistic features to detect DGA-domains.
Antonakakis et al. [7] presented a system that identifies
botnet groups running the same DGA by clustering NXDs
based on syntactic features. Thomas and Mohaisen [23]
analyzed NXD queries at com, net, tv, and cc top-level domain
(TLD) authoritative name servers to identify communities of
malicious domains sharing similar lookup patterns. Shar-
ifnya and Abadi [21] proposed a reputation-based DGA
detection method by calculating reputation scores of hosts
based on suspicious DGA-related domain queries and ab-
normal amounts of failed queries. This work complements
these studies by leveraging identified DGA-domains as input
to accurately assess the threat landscape.

In contrast of the bulk of work on detecting DGA-
domains in DNS traffic, the studies on assessing DGA-bot
populations are fairly limited. The first approach is capturing
C2 channels and backtracing to infected machines. Stone-
Gross et al. [22] monitored Torpig botnet operations by
hijacking its C2 communications and measured the botnet
size using unique identifiers of compromised hosts. Nelms
et al. [15] proposed to learn control protocol templates from
confirmed C2 communications and adapt such templates
to discover previously unknown C2 channels. The second
approach is vetting DNS behavior of individual machines and
identifying positive matches with confirmed DGA-domains.
This work is among the first non-intrusive solutions capable
of accurately assessing DGA-bot populations while incurring
minimal operational costs.

VII. CONCLUSION

In this paper, we present BOTMETER, a novel tool to assess
populations of DGA-embedded bots distributed over large
networks solely using DNS traffic observable at upper-level
DNS servers. We established a new taxonomy of DGAs based
on their inherent DNS querying patterns. This allows us
to develop a rich library of rigorous analytical models to
capture the DNS dynamics of an array of DGA-embedded
botnets. Through extensive empirical studies using both
synthetic and real DNS traces collected from a large enter-
prise network over a one-year timespan, we demonstrated
that BOTMETER is able to accurately estimate the severity
of botnet infection in a non-intrusive and noise-tolerant
manner, thereby helping analysts quickly navigate the threat
landscape of their networks and prioritize the remediation
efforts. This work also opens up several directions for future
investigations: 1) combining temporal and semantic traits
of DNS lookups to develop more effective bot population
estimators; 2) complementing BOTMETER with visual ana-
lytical components to fully exploit its potential; and 3) (from
attacker’s perspective) designing advanced DGA models that
evade effective population estimation.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their insightful comments and suggestions to improve
the quality of this paper. They are also grateful for the
fruitful discussion with Josyula R. Rao, Douglas Schales
and Dhilung Kirat. This work was partly supported by the
National Science and Technology Support Program of China
under grant No. 2014BAH24F01.

REFERENCES

[1] Malware Authors Expand Use of Domain Generation Algo-
rithms to Evade Detection. http://www.pcworld.com/, 2012.

[2] Unveiling The Latest Variant of Pushdo.
http://www.damballa.com/, 2013.

[3] GameOver Zeus Mutates, Launches Attacks.
http://blog.malcovery.com/, 2014.

[4] Necurs: The Malware that Breaks Your Security.
http://www.trendmicro.com/, 2014.

[5] Ranbyus Banking Trojan, Cousin of Zbot.
http://www.mysonicwall.com/, 2014.

[6] M. Antonakakis, R. Perdisci, D. Dagon, W. Lee, and N. Feam-
ster. Building a Dynamic Reputation System for DNS. In
SEC, 2010.

[7] M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou, S. Abu-
Nimeh, W. Lee, and D. Dagon. From Throw-away Traffic to
Bots: Detecting the Rise of DGA-based Malware. In SEC,
2012.

[8] T. Barabosch, A. Wichmann, F. Leder, and E. Gerhards-
Padilla1. Automatic Extraction of Domain Name Generation
Algorithms from Current Malware. In NIAS, 2012.

[9] F. Giroire, J. Chandrashekar, N. Taft, E. Schooler, and D. Pa-
pagiannaki. Exploiting Temporal Persistence to Detect Covert
Botnet Channels. In RAID, 2009.

[10] G. Gu, J. Zhang, and W. Lee. BotSniffer: Detecting botnet
command and control channels in network traffic. In NDSS,
2008.

[11] IETF. Common DNS Operational and Configuration Errors.
http://tools.ietf.org/html/rfc1912, 1996.

[12] F. Leder and T. Werner. Know Your Enemy: Containing
Conficker, To Tame a Malware. http://www.honeynet.org/,
2009.

[13] Y. Nadji, M. Antonakakis, R. Perdisci, D. Dagon, and W. Lee.
Beheading Hydras: Performing Effective Botnet Takedowns.
In CCS, 2013.

[14] A. Nappa, A. Fattori, M. Balduzzi, M. Dell’Amico, and
L. Cavallaro. Take a Deep Breath: A Stealthy, Resilient and
Cost-effective Botnet Using Skype. In DIMVA, 2010.

[15] T. Nelms, R. Perdisci, and M. Ahamad. Execscent: Mining
for new c&c domains in live networks with adaptive control
protocol templates. In SEC, 2013.

[16] P. Porras, H. Saı̈di, and V. Yegneswaran. A Foray into
Conficker’s Logic and Rendezvous Points. In LEET, 2009.

[17] S. M. Ross. Stochastic Processes (Wiley Series in Probability
and Statistics). Wiley, 2 edition, 1995.

[18] C. Rossow, D. Andriesse, T. Werner, B. Stone-Gross,
D. Plohmann, C. J. Dietrich, and H. Bos. Sok: P2pwned -
modeling and evaluating the resilience of peer-to-peer botnets.
In S&P, 2013.

[19] S. Schiavoni, F. Maggi, L. Cavallaro, and S. Zanero. Phoenix:
DGA-Based Botnet Tracking and Intelligence. In DIMVA,
2014.

[20] Sergei Shevochenko. Domain Name Generator for Murofet.
http://blog.threatexpert.com/, 2010.

[21] R. Sharifnya and M. Abadi. A novel reputation system to
detect DGA-based botnets. In ICCKE, 2013.

[22] B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szyd-
lowski, R. Kemmerer, C. Kruegel, and G. Vigna. Your Botnet
is My Botnet: Analysis of a Botnet Takeover. In CCS, 2009.

[23] M. Thomas and A. Mohaisen. Kindred domains: detecting
and clustering botnet domains using DNS traffic. In WWW,
2014.

[24] T. Wang, X. Hu, J. Jang, S. Ji, M. Stoeck-
lin, and T. Taylor. Technical Report: A
Nimble Navigator for DGA-Botnet Landscape.
http://x-machine.github.io/reports/BotMeterTR.pdf, 2015.

[25] S. Yadav, A. K. K. Reddy, A. N. Reddy, and S. Ranjan. De-
tecting Algorithmically Generated Malicious Domain Names.
In SIGCOMM, 2010.

